
IconManager.doc

IconManager.doc ii

COLLABORATORS

TITLE :

IconManager.doc

ACTION NAME DATE SIGNATURE

WRITTEN BY March 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

IconManager.doc iii

Contents

1 IconManager.doc 1

1.1 IconManager.doc . 1

1.2 Copyright . 2

1.3 System Requirements . 2

1.4 User Requirements . 3

1.5 Introduction . 3

1.6 Installation . 4

1.7 Usage from the Shell . 5

1.8 Usage from Workbench . 7

1.9 The GUI . 7

1.10 Icons: . 9

1.11 WhatIs.library . 9

1.12 Future . 12

1.13 Obligatory Quotes Section . 12

1.14 Contacting The Author . 13

1.15 Acknowledgements . 14

IconManager.doc 1 / 14

Chapter 1

IconManager.doc

1.1 IconManager.doc

IconManager V37.1

© Copyright 1994 Alex Taylor
All Rights Reserved

WhatIs.library

© Copyright 1990, 1992 S.R & P.C.
All Rights Reserved

Contents
========

Copyrights and Disclaimer

System Requirements

User Requirements

Introduction

Installation

Usage from the Shell

Usage from Workbench

The GUI

Icons:

WhatIs.library

Future

IconManager.doc 2 / 14

Obligatory Quotes Section

Contacting The Author

Acknowledgements

1.2 Copyright

IconManager is © Copyright 1994 Alex Taylor, all Rights Reserved.
It may be freely distributed, provided that no charge is made, other
than a reasonable fee for media/copying.
It may not be uploaded to BBSs which claim copyright on any uploaded
material. It may not be distributed on coverdisks without the written
permission of the author.
When distributing IconManager, distribute ALL files together, preferably
as the original archive you received (if you did...). None of the files
may be modified, other than "FileTypes", and none may be removed from
the archive. However, feel free to update FileTypes to include new types,
and add new icons to the package. If you do this, though, please send me
copies of both icons and FileTypes so that I can add them to the next release.
As always, Fred Fish has permission to include IconManager on his AmigaLib
CDs/floppies...

IconManager uses the
whatis.library

, which is © Copyright 1990, 1992 S.R & P.C.
See the WhatIs documentation for further details.

DISCLAIMER

You use IconManager at your own risk. No warranties are made or implied. I do
not know of any bugs in IconManager; however, bugs may exist, so watch it!
I cannot and will not be held responsible for any damage or loss of data/life/
family pets caused by the use or misuse of IconManager, so don’t bother sueing.

To summarize : no selling, filching, modifying or complaining (unless it’s a
bug report).

If you do not agree with any of the above, then you must delete this package
now. THIS MEANS YOU!

1.3 System Requirements

Any Amiga running Kickstart V37+ (not supplied)
WhatIs.library (supplied)

IconManager.doc 3 / 14

1.4 User Requirements

IconManager is Shareware. If you use it, you are requested to pay ←↩
the Shareware

fee.

Fees are as follows:

£5.00 sterling

OR $US10.00

OR DM15,-

If you live in Great Britain, you can pay by cheque, postal order or cash.
For the rest of the world, unless you know an alternative cheap method,
please send CASH ONLY! Cash is acceptable in any of the above currencies.

Alternatively, if you write Shareware software yourself, send me a
registered copy of your latest program. (Standard density disks only,
please.)

See
Contacting The Author
for the addresses.

1.5 Introduction

Since the release of Workbench2, users have had the option to view ←↩
all files on

the Workbench, whether they had corresponding .info files or not. Workbench
would create a "pseudo-icon" for those with no icon. However, Workbench only
differentiates between six objects : Disk, Drawer, Tool, Project, Trashcan and
Kick (non-DOS disk). Additionally, Workbench considers a file to be a Tool if
its "executable" bit is set, and a "Project" otherwise, regardless of whether
the file is actually a program or not. This is a bit pathetic, not to mention
boring, staring at rows and rows of identical icons. Wouldn’t it be nice if
Workbench could identify the files and display suitable icons for them?

Enter IconManager, stage left :-)

IconManager fools the Workbench into thinking that icon-less files have real
icons, and then supplies an icon for each file, based on its type. Simple.
Well, not really, otherwise it wouldn’t have taken me so long to do...
The idea (according to a text file I found whilst clearing my hard drive)
was generated last November!

Identifying files is done by use of the whatis.library. It recognises 30
filetypes internally, and more can be added through its configuration file.
See

WhatIs.library

IconManager.doc 4 / 14

for details. If the file can be identified, and an
appropriate icon exists for it, then the icon is passed to Workbench, where it
is treated like a real icon. If the file cannot be identified, or if no icon
exists, then Workbench uses the standard defaults instead.
Currently, IconManager only fakes icons for files. Drawers and Disks are
handled in the normal way.

This is not the first program I have seen that does this trick, but it is the
only one that I’ve seen that actually works...

In addition to this, IconManager provides the ability to write these faked
icons out to disk, thus giving the file a real icon. If the file already had a
real icon, it will be overwritten, but any of its attributes (position, default
tool, tooltypes, etc.) may be preserved.

Finally, if you set the default tool of the fake icons, double-clicking on one
will attempt to load the file into the appropriate tool.

IconManager uses the following algorithm to determine whether or not to fake
icons: If the icon is on the "Workbench" window, it checks the icon of the
directory being scanned, and does what its flags say. If there is no icon, it
fakes anyway. Otherwise, it goes by the user’s selection on the "Window" menu.

1.6 Installation

Very easy - double-click on the "Install" icon and follow the ←↩
instructions.

IconManager’s Install uses Commodore’s Installer program (not supplied).

If you want to do the installation by hand, this is what you need to do:

(1) Copy the IconManager executable and its icon to wherever you want
them. Suggested place is SYS:WBStartup/

(2) Copy the doc files to wherever you want them.

(3) Copy Libs/whatis.library to LIBS:

(4) Copy S/FileTypes to S:

(5) Copy the Icons drawer to your disk.

(6) Add the following lines to S:User-Startup ->

Makedir RAM:Icons
Copy SYS:Icons/#? RAM:Icons ALL QUIET
Assign Icons: RAM:Icons

Alternatively, if you have a hard drive, you might prefer to save RAM,
and leave the Icons drawer on the drive, in which case simply assign
Icons: to wherever you have the icons.

IconManager.doc 5 / 14

To have IconManager started up every time you boot, either place it in
the WBStartup drawer, or add the following line to S:User-Startup ->

Run >NIL: IconManager <options>

Note that IconManager must be in the path, unless you supply an explicit
path, and that this line MUST be after the assign statement!

See
Usage from the Shell
for a description of the command-line options.

1.7 Usage from the Shell

Type "IconManager ?" at a command prompt to get the command ←↩
template.

It looks like this:

M=MODE/N, P=SAVEPOS/S, S=SAVESTACK/S, O=SAVETOOL/S, D=SAVEDEFTOOL/S,
W=SAVEWINDOW/S, I=ICON/S, X=ICONXPOS/N, Y=ICONYPOS/N, T=ICONTEXT/M

The arguments act as follows:

MODE=n - sets the operation mode of IconManager, where n=0, 1 or 2
Defaults to 1

SAVEPOS - save old icon’s coordinates when overwriting. Defaults
FALSE.

SAVESTACK - save old icon’s stacksize when overwriting. Defaults
FALSE.

SAVETOOL - save old icon’s tooltypes when overwriting. Defaults
FALSE.

SAVEDEFTOOL - save old icon’s default tool when overwriting. Defaults
FALSE.

SAVEWINDOW - save old icon’s window defs when overwriting (drawers and
disks only...). Defaults FALSE.

ICON - create an AppIcon on the Workbench. Defaults FALSE.

ICONXPOS=n - x coordinate of the AppIcon. Defaults to NOICONPOSITION.

ICONYPOS=n - y coordinate of the AppIcon. Defaults to NOICONPOSITION.

ICONTEXT=string - text to display under the AppIcon. Defaults to
"Write Icon". MUST be the last argument on the line!

IconManager.doc 6 / 14

IconManager operates in one of three modes. Mode is set by either the MODE
switch from the Shell, the MODE tooltype from Workbench, or the MODE gadget
in the GUI.

MODE=0 disables IconManager’s faking of icons. The "Write Icon" function will
still work, though.

MODE=1 (default) IconManager will respect the setting of "Show..." on the
Workbench "Window" menu.

MODE=2 override mode. Icons will be faked regardless of the menu setting.

NOTE : When switching between modes, or switching between "Show Only Icons"
and "Show All Files" on Workbench’s "Window" menu, it may be
neccessary to select "Update" from the "Window" menu in order for
the changes to take effect.

When running, IconManager creates two AppMenuItems on the "Tools" menu. It will
also optionally create an AppIcon on Workbench. This is controlled by use of
the ICON switch or tooltype.

The first menuitem, "IconManager", brings up the config window when selected.
If the AppIcon is present, double-clicking on it has the same effect.
See

The GUI
for details of its use.

The second menuitem, "Write Icon", will write to disk default icon(s) for any
files selected when the menuitem is selected. Dropping icons on the AppIcon
will also perform this action. Note that the selected icons may be real, faked
or Workbench-created pseudo-icons.
When the selected object has a real icon, certain of its attributes may be
preserved in the new icon. Which attributes are preserved is set by the
switches above.
WriteIcon will work for any object. Disks and drawers receive the system’s
default icon, as do any files which IconManager cannot identify. Note that
IconManager’s ID routines are different to Workbench’s, so that a file which
shows up with Workbench’s "default tool" icon may switch to the "default
project" icon when WriteIcon is performed on it. Default Tool icons will only
be written if the file is actually an executable.

The faked icons can be dropped onto IconEdit or similar, but they will not
show up in the Shell, directory utilities (eg SID) or file-requesters. This
is (currently) deliberate. If you would prefer this to be configurable, drop
me a line. (See

Contacting The Author
for addresses.)

Starting a second copy of IconManager will cause the first one to quit.

WARNING : IconManager patches two library functions, dos/ExNext() and
icon/GetIcon(). It does NOT check them before exiting...so anything
installed after IconManager which patches the same vectors will be
"cut off", and will almost certainly cause a system crash when it

IconManager.doc 7 / 14

is removed. If you are not sure about the state of the patches, you
can disable IconManager from its GUI. See

The GUI
for details.

Additionally, at present, IconManager MUST be run after any programs
which patch the Workbench menus, eg "ToolsDaemon" (© Nico François).
This is due to a small problem in the way in which IconManager
reads the Workbench menus...being investigated :-)
The best way to ensure this is to set the tooltype "STARTPRI=-128"
if running from WBStartup, or place it after the "LoadWB" command
in your startup-sequence if running from the Shell. If you selete
"Save" from the GUI, IconManager will write the tooltype out to its
icon automatically.

NOTE : If IconManager is launched from the Shell, it does not read its
tooltypes. Only the command-line arguments apply.

1.8 Usage from Workbench

To start IconManager, double-click on its icon. Configuration of ←↩
IconManager

is by the use of tooltypes. The following are available:

MODE=n
ICON
ICONXPOS=n
ICONYPOS=n
ICONTEXT=string
SAVEPOS
SAVESTACK
SAVEDEFTOOL
SAVETOOLS
SAVEWINDOW
DONOTWAIT - needed if you are placing IconManager in WBStartup
STARTPRI=n - recommended! Set n=-128, see above for reason!

See
Usage from the Shell
for details of what they do.

When you save your configuration from the GUI, it writes new tooltypes into
the icon. These will overwrite all old ones, except the "DONOTWAIT" tooltype,
and the "STARTPRI" tooltype. Note that saving will *ALWAYS* result in the
tooltype "STARTPRI=-128" being written to the icon...

1.9 The GUI

IconManager.doc 8 / 14

To bring up the IconManager config window, either select "IconManager" from
the "Tools" nenu on Workbench, or double-click on the AppIcon (if created).

The window is fully font-adaptive, normally to the screen font of Workbench,
but if using the screen font would result in a window larger than the screen,
IconManager will attempt to use the default system font, or, failing that,
topaz-8. In any event, the window will adapt itself to the font when opened.
It will center itself as best as possible on the mouse pointer, but it will
never go off the visible part of the screen (unless it is larger than the
visible part...). Should the worst occur, and come of the gadgets are not
accessible, the keyboard shortcuts will still work.
Under Kickstart V39+, the checkbox gadgets will also be scaled...

The window is divided into three main areas :-

At the left side are the controls for the AppIcon:

Create Icon : If checked, the AppIcon will be created
Any Position : If checked, Workbench will put the icon in

the first available position
X : If the "Any Position" gadget is not checked,

you can enter the X coordinate for the AppIcon
in here

Y : Enter the Y coordinate for the AppIcon here
Label : Enter the text to be placed under the AppIcon

here

Notes : If "Any Position" is not checked, the "X" and "Y" gadgets
will be disabled.

You can still set the coords and label for the AppIcon
whether you are creating it or not, and they will still
be saved to the icon.

If "Any Position" is checked, then no ICONXPOS or ICONYPOS
tooltypes will be saved; if the Label is "Write Icon", no
ICONTEXT tooltype will be saved. This is normal, as the
defaults are "No Position" and "Write Icon".

At the right side are the settings for attribute preservation:

Position : Save old icon’s coords when overwriting
StackSize : Save old icon’s stacksize when overwriting
Default Tool : Save old icon’s default tool
Tool Types : Save old icon’s tooltypes
Window : Save old icon’s window defs (drawers/disks only)

At the bottom are the main controls:

Mode : Set the operating mode of IconManager
About... : Brings up an information window
Save : Saves the current config to IconManager’s icon

IconManager.doc 9 / 14

Use : Uses the current config without saving
Cancel : Return to the previous settings and close the

window
Quit : Guess what this one does...

Notes : If there is insufficient memory to open the config window,
IconManager will open a requester from where you can quit
the program if you wish.

All gadgets in the window have keyboard shortcuts.

1.10 Icons:

The default icons used by IconManager are stored in a drawer. The ←↩
logical

assignment "Icons:" is made to this drawer, allowing you to put the icons
wherever you like. Floppy users will probably want to copy them to RAM:
for speed. If you have a hard drive (or low memory!), you may prefer to
leave them on your boot disk or something. Mine are in DH1:Icons/

You do not need to have an icon for every filetype IconManager can recognise.
If the file is identified, but no icon exists, then Workbench will provide
a system default icon for it. Workbench will also handle Disk/Drawer icons.
Placing "def_Disk.info" or "def_Drawer.info" in Icons: will have no effect
on this (yet...) However, the icon "def_Tool.info" is used by IconManager.
If this icon is missing, the Workbench will use its "def_Tool" icon instead.

Due to the way in which whatis.library works, IconManager differentiates
between the following types of executable : "def_Tool", "def_Pure Exe",
"def_PP40 Exe", "def_PP30 Exe", and "def_PP Exe".
This neans that even if you want them all to have the same icon, an icon must
exist for each type. See

WhatIs.library
for more information.

1.11 WhatIs.library

IconManager uses the whatis.library to identify filetypes. Whatis.library is
© Copyright S.R & P.C.

Whatis.library recognises 28 different filetypes internally, and more can be
added by means of a simple configuration file, S:FileTypes.
The types whatis.library knows about are:

Disk
Assign - not used by IconManager
Drawer
Tool - executable
Pure Exe - executable with the "pure" bit set
PP40 Exe - executable packed with Powerpacker V4

IconManager.doc 10 / 14

PP30 Exe - executable packed with Powerpacker V3
PP Exe - executable packed with Powerpacker < V3
Script - not sure...
Text - ASCII text
Object - object code
Lib - linker library
IFF - IFF-ILBM
ILBM - not sure about this one...
ILBM24 - 24-bit ILBM
ANIM - IFF-ANIM
8SVX - IFF-8SVX
SMUS - IFF-SMUS
FTXT - IFF-FTXT
Prefs - IFF prefs file
Term - term file
Icon - not used by IconManager!
Imp Data - file packed with Imploder
PP Data - file packed with Powerpacker
Zoo - zoo archive
LHArc - LhA or similar archive
MED Mod - MED song

The default icon for each of these is "def_<name>.info" where <name> is one
of the above.
Icons for each of these (apart from Assign, Drawer and Icon!) are provided in
the "Icons" drawer of this distribution. Additionally, the S/FileTypes file
adds the follwing types to the list:

s - assembler source file
i - assembler include file
c - C source file
h - c include file
Library - run-time library
Device - device
GIF
JPEG
Doc - text file with filename including "doc" somewhere
Readme - text file with filename including "readme" somewhere
Guide - AmigaGuide file
DMS - dms-packed archive
dvi - dvi file
tex - tex file
rexx - ARexx script
Zip - zip archive
pcx - pcx graphic file
mod - SoundTracker/equivalent module
imgobj - Imagine file
filesys - filesystem

Icon names as above.
Icons for these are also present in "Icons".

I think all the icons are Public Domain; they’ve been sitting on my hard drive
for so long I can’t remember where they came from now :-) Apologies if
they’re not!
Replace them by all means, but please send me copies of any nice ones that I

IconManager.doc 11 / 14

can include with the next release.

To define your own types, you need to edit S:FileTypes.
Each filetype has a definition in this file. The format of these definitions
is very simple, using a few keywords to define each type:

TYPE <string> - starts the type entry for <string>
Must be the first keyword.

SUBTYPE <string> - this type is a subtype of <string>
This is optional.

INSERTAFTER <string> - places the new type after <string> in the
filetypes list, as the list is not
alphabetically sorted. Optional, not used by
IconManager.

ICONNAME <string> - <string> is the name of the default icon
filename (minus the .info bit...).
Optional. If not supplied, then the string
"def_<typename>" will be used instead.

NAMEPATTERN <string> - <string> is a standard AmigaDOS pattern-
matching string. The filename of the file
being scanned must match this pattern.
Optional, mutually exclusive with
OPTNAMEPATTERN.

OPTNAMEPATTERN <string> - the same as NAMEPATTERN, but may be
overridden. Optional, mutually exclusive
with NAMEPATTERN.

COMPAREBYTE <n> <bytes> - test the file for <bytes> at offset <n>
bytes in to it. Optional.

COMPAREBYTE <n> <string>- test the file for <string> at offset <n>.
Optional.

SEARCHBYTE <string> - search for <string> in the first block of
the file.

SEARCHBYTE <bytes> - search for <bytes> in the first block of the
file.

SEARCHPATTERN [CASE] <string>
- search for <string> in file. If CASE is

specified, search is case-sensitive.
MATCHPATTERN [CASE] <n> <string>

- search for <string> in file at offset <n>.
If CASE is specified, search is case-
sensitive.

ENDTYPE - ends the type entry.
- anything else on this line is a comment.

Note : <string> means ASCII text, enclosed in quotes, eg - "Hello"
<bytes> means actual byte values, entered in hexadecimal,
eg - $ABCD, or decimal, eg - 1234, or binary, eg - %10101
<n> means a single number from 0 to 255 ($0 to $FF)

Example: defining the type for assembler source files:

TYPE "asm" ; ID string
SUBTYPE "text" ; the file must also be a text file
NAMEPATTERN "#?.(s|asm) ; the filename must end in either ".s"

; or ".asm"
ENDTYPE ; end of type definition

IconManager.doc 12 / 14

Example: defining the type for IFF-ILBM files:

TYPE "iff" ; ID string
COMPAREBYTE 0 "FORM" ; check for the string "FORM" at the

; start of the file
COMPAREBYTE 8 "ILBM" ; check for the string "ILBM" at the

; eighth byte in
ENDTYPE ; end of type definition

See the FileTypes file for more examples (which work!)

Whatis.library can perform two types of scanning - LIGHT and DEEP. Light
scanning only checks the filename, so if you renamed an executable to end
in ".s", whatis.library would think it was an assembler source file if the
SUBTYPE keyword were missing. DEEP scanning overrides the filename checking,
which means that libraries (which are executables) show up as executables in
DEEP mode, but libraries in LIGHT mode.
IconManager performs a LIGHT scan, followed by a DEEP scan if the file could
not be identified in LIGHT mode, which means that libraries will show up as
libraries rather than executables...took some doing to get that working!

If any condition in the filetype definition is not satisfied, then
whatis.library will not identify the file as that type.

See the whatis.library documentation for more information.

1.12 Future

What happens next? Well, that’s up to you... If people pay the shareware fee,
and send me suggestions, I will continue to develop IconManager.
Current ideas for the next release include:

A GUI-based editor for the FileTypes file
Support for muFS so that "protected" files don’t show up at all...
Rewrite the damn thing in C!

Any other ideas? If so, send them to me (with some money :-) and I’ll see
what I can do...

If you have an idea for another program, send that along too. I’m doing a
computing course at present, so I may as well get some practise in...

After a fruitless session of trying to get "ShellMenus" to work, I am
thinking about writing my own. Any suggestions for that...?

1.13 Obligatory Quotes Section

Well, everybody’s doing it these days...

"Trust me, I’m a Doctor" - The Doctor (c’mon BBC, bring him back!)

IconManager.doc 13 / 14

"The Hedgehog Can Never Be Buggered At All"
- Nanny Ogg (© Terry Pratchett)

"I need a vacation" - The Terminator

"Mind your own business, Spock. I’m sick of your half-breed interference."
- James T Kirk

"UNIX soit qui mal y pense" - unknown

"Ninety percent of everything is crud"
- Sturgeon’s Law

"God made the integers; all else is the work of Man"
- unknown

"Two’s company; three’s a Liberal Democrat meeting"
- unknown

1.14 Contacting The Author

This is a little complicated...

Shareware fees should be sent to:

Alex Taylor
20 Nunroyd Road
Moortown
Leeds
LS17 6PF
ENGLAND

Bug reports/suggestions/queries should be sent to the above during
University holidays, and to one of the below in term-time:

Internet: apt@hw.ac.uk
ceeapt@cs.hw.ac.uk
ceeapt@cee.hw.ac.uk

Try them all until you get through...to say that we’re not
very well connected is an understatement!
The first one is the one I use for anonymous ftp-ing, the
second one is known to work from the Helios net at Aston
University (but not from anywhere else at Aston...?), and
the last one seems to work from Oxford...

snail-mail: Alex Taylor
Newbattle Abbey College
Dalkeith
Midlothian
EH22 3LL
SCOTLAND

IconManager.doc 14 / 14

Note : this address is only valid until June 1994!
After that, please use the top address if e-mail is
inappropriate or unavailable.

1.15 Acknowledgements

S.R. & P.C (whoever you are) for the whatis.library...

Commodore for making this job a damn sight harder than it should
have been! Pleeeeease make Workbench use the LVO’s! That’s what
they’re there for!

Whoever it was wrote the program that gave me this idea...

	IconManager.doc
	IconManager.doc
	Copyright
	System Requirements
	User Requirements
	Introduction
	Installation
	Usage from the Shell
	Usage from Workbench
	The GUI
	Icons:
	WhatIs.library
	Future
	Obligatory Quotes Section
	Contacting The Author
	Acknowledgements

